Get League Transactions
Source:R/0_generics.R
, R/espn_transactions.R
, R/flea_transactions.R
, and 2 more
ff_transactions.Rd
This function returns a tidy dataframe of transactions - generally one row per player per transaction per team. Each trade is represented twice, once per each team.
Usage
ff_transactions(conn, ...)
# S3 method for espn_conn
ff_transactions(conn, limit = 1000, ...)
# S3 method for flea_conn
ff_transactions(conn, franchise_id = NULL, ...)
# S3 method for mfl_conn
ff_transactions(conn, custom_players = deprecated(), ...)
# S3 method for sleeper_conn
ff_transactions(conn, week = 1:17, ...)
Arguments
- conn
the list object created by
ff_connect()
- ...
additional args for other methods
- limit
number of most recent transactions to return
- franchise_id
fleaflicker returns transactions grouped by franchise id, pass a list here to filter
- custom_players
- week
A week filter for transactions - 1 returns all offseason transactions. Default 1:17 returns all transactions.
Methods (by class)
espn_conn
: ESPN: returns adds, drops, and trades. Requires private/auth-cookie.flea_conn
: Fleaflicker: returns all transactions, including free agents, waivers, and trades.mfl_conn
: MFL: returns all transactions, including auction, free agents, IR, TS, waivers, and trades.sleeper_conn
: Sleeper: returns all transactions, including free agents, waivers, and trades.
Examples
if (FALSE) {
# Marked as don't run because this endpoint requires private authentication
conn <- espn_connect(
season = 2020,
league_id = 1178049,
swid = Sys.getenv("TAN_SWID"),
espn_s2 = Sys.getenv("TAN_ESPN_S2")
)
ff_transactions(conn)
}
# \donttest{
try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 312861)
ff_transactions(conn)
}) # end try
#> # A tibble: 462 × 12
#> timestamp type type_desc franchise_id franchise_name player_id
#> <dttm> <chr> <chr> <int> <chr> <glue>
#> 1 2022-04-30 02:20:15 free_age… dropped 1582423 The Verblande… 12934
#> 2 2022-04-30 02:18:46 free_age… dropped 1582423 The Verblande… 12906
#> 3 2022-04-30 02:18:33 free_age… dropped 1582423 The Verblande… 7378
#> 4 2022-04-30 02:18:24 free_age… dropped 1582423 The Verblande… 6660
#> 5 2022-01-01 11:00:00 free_age… dropped 1581720 brosene's Team 5479
#> 6 2022-01-01 11:00:00 waiver added 1581720 brosene's Team 11245
#> 7 2021-12-30 11:00:00 free_age… dropped 1581720 brosene's Team 12223
#> 8 2021-12-30 11:00:00 free_age… dropped 1581720 brosene's Team 10449
#> 9 2021-12-30 11:00:00 waiver added 1581720 brosene's Team 11300
#> 10 2021-12-30 11:00:00 waiver added 1581720 brosene's Team 16404
#> # … with 452 more rows, and 6 more variables: player_name <glue>, pos <chr>,
#> # team <chr>, trade_partner_id <int>, trade_partner_name <chr>,
#> # trade_id <int>
# }
# \donttest{
try({ # try only shown here because sometimes CRAN checks are weird
dlf_conn <- mfl_connect(2019, league_id = 37920)
ff_transactions(dlf_conn)
}) # end try
#> # A tibble: 1,146 × 12
#> timestamp type type_desc franchise_id franchise_name player_id
#> <dttm> <chr> <chr> <chr> <chr> <chr>
#> 1 2019-12-19 11:56:49 FREE_AGE… added 0003 Electric Spid… 13868
#> 2 2019-12-19 11:56:49 FREE_AGE… dropped 0003 Electric Spid… 13387
#> 3 2019-12-19 03:03:13 FREE_AGE… added 0019 Advance Repti… 12857
#> 4 2019-12-19 03:03:13 FREE_AGE… dropped 0019 Advance Repti… 11186
#> 5 2019-12-19 03:02:26 FREE_AGE… added 0019 Advance Repti… 13868
#> 6 2019-12-19 03:02:26 FREE_AGE… dropped 0019 Advance Repti… 14305
#> 7 2019-12-15 17:28:15 FREE_AGE… added 0003 Electric Spid… 12197
#> 8 2019-12-15 17:27:28 FREE_AGE… dropped 0003 Electric Spid… 12623
#> 9 2019-12-15 17:27:00 FREE_AGE… added 0003 Electric Spid… 13387
#> 10 2019-12-15 17:26:27 IR deactiva… 0003 Electric Spid… 14138
#> # … with 1,136 more rows, and 6 more variables: player_name <chr>, pos <chr>,
#> # team <chr>, bbid_spent <dbl>, trade_partner <chr>, comments <chr>
# }
# \donttest{
try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_transactions(jml_conn, week = 1:2)
}) # end try
#> # A tibble: 661 × 13
#> timestamp type type_desc franchise_id franchise_name player_id
#> <dttm> <chr> <chr> <chr> <chr> <chr>
#> 1 2020-09-23 08:04:23 waiver_c… added 5 Barbarians 5162
#> 2 2020-09-23 08:04:23 waiver_c… dropped 5 Barbarians 6074
#> 3 2020-09-23 08:04:23 waiver_c… added 3 solarpool 4054
#> 4 2020-09-23 08:04:23 waiver_f… added 3 solarpool 2431
#> 5 2020-09-23 08:04:23 waiver_f… added 4 The FANTom Me… 5001
#> 6 2020-09-23 08:04:23 waiver_f… dropped 4 The FANTom Me… 4994
#> 7 2020-09-23 08:04:23 waiver_c… added 4 The FANTom Me… 2431
#> 8 2020-09-23 08:04:23 waiver_c… dropped 4 The FANTom Me… 4994
#> 9 2020-09-23 08:04:23 waiver_f… added 6 sox05syd 6001
#> 10 2020-09-23 08:04:23 waiver_f… dropped 6 sox05syd 827
#> # … with 651 more rows, and 7 more variables: player_name <chr>, pos <chr>,
#> # team <chr>, bbid_amount <int>, trade_partner <chr>, waiver_priority <int>,
#> # comment <chr>
# }