In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on Sleeper.
We’ll start by loading the packages:
In Sleeper, unlike in other platforms, it’s very unlikely that you’ll remember the league ID - both because most people use the mobile app, and because it happens to be an 18 digit number! It’s a little more natural to start analyses from the username, so let’s start there!
solarpool_leagues <- sleeper_userleagues("solarpool",2020)
#> Using request.R from "ffscrapr"
head(solarpool_leagues)
#> # A tibble: 3 × 4
#> league_name league_id franchise_name franchise_id
#> <chr> <chr> <chr> <chr>
#> 1 z_dynastyprocess-test 6335017617761… solarpool 20289203836…
#> 2 The JanMichaelLarkin Dynasty League 5224587733170… solarpool 20289203836…
#> 3 DLP Dynasty League 5213790203320… DLP::thoriyan 20289203836…
Let’s pull the JML league ID from here for analysis, and set up a Sleeper connection object.
jml_id <- solarpool_leagues %>%
filter(league_name == "The JanMichaelLarkin Dynasty League") %>%
pull(league_id)
jml_id # For quick analyses, I'm not above copy-pasting the league ID instead!
#> [1] "522458773317046272"
jml <- sleeper_connect(season = 2020, league_id = jml_id)
jml
#> <Sleeper connection 2020_522458773317046272>
#> List of 5
#> $ platform : chr "Sleeper"
#> $ season : num 2020
#> $ user_name: NULL
#> $ league_id: chr "522458773317046272"
#> $ user_id : NULL
#> - attr(*, "class")= chr "sleeper_conn"
I’ve done this with the sleeper_connect()
function,
although you can also do this from the ff_connect()
call -
they are equivalent. Most if not all of the remaining functions after
this point are prefixed with “ff_”.
Cool! Let’s have a quick look at what this league is like.
jml_summary <- ff_league(jml)
str(jml_summary)
#> tibble [1 × 16] (S3: tbl_df/tbl/data.frame)
#> $ league_id : chr "522458773317046272"
#> $ league_name : chr "The JanMichaelLarkin Dynasty League"
#> $ season : int 2020
#> $ league_type : chr "dynasty"
#> $ franchise_count: num 12
#> $ qb_type : chr "1QB"
#> $ idp : logi FALSE
#> $ scoring_flags : chr "0.5_ppr"
#> $ best_ball : logi FALSE
#> $ salary_cap : logi FALSE
#> $ player_copies : num 1
#> $ years_active : chr "2019-2020"
#> $ qb_count : chr "1"
#> $ roster_size : int 25
#> $ league_depth : num 300
#> $ prev_league_ids: chr "386236959468675072"
Okay, so it’s the JanMichaelLarkin Dynasty League, it’s a 1QB league with 12 teams, half ppr scoring, and rosters about 300 players.
Let’s grab the rosters now.
jml_rosters <- ff_rosters(jml)
head(jml_rosters)
#> # A tibble: 6 × 7
#> franchise_id franchise_name player_id player_name pos team age
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 Fake News 1110 T.Y. Hilton WR NA 34.5
#> 2 1 Fake News 1339 Zach Ertz TE NA 33.5
#> 3 1 Fake News 1426 DeAndre Hopkins WR TEN 32
#> 4 1 Fake News 1825 Jarvis Landry WR NA 31.5
#> 5 1 Fake News 2025 Albert Wilson WR NA 31.9
#> 6 1 Fake News 2197 Brandin Cooks WR DAL 30.7
Values
Cool! Let’s pull in some additional context by adding DynastyProcess player values.
player_values <- dp_values("values-players.csv")
# The values are stored by fantasypros ID since that's where the data comes from.
# To join it to our rosters, we'll need playerID mappings.
player_ids <- dp_playerids() %>%
select(sleeper_id,fantasypros_id)
player_values <- player_values %>%
left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>%
select(sleeper_id,ecr_1qb,ecr_pos,value_1qb)
# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff
jml_values <- jml_rosters %>%
left_join(player_values, by = c("player_id"="sleeper_id")) %>%
arrange(franchise_id,desc(value_1qb))
head(jml_values)
#> # A tibble: 6 × 10
#> franchise_id franchise_name player_id player_name pos team age ecr_1qb
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 1 Fake News 4866 Saquon Barkley RB NYG 27.3 38.2
#> 2 1 Fake News 4037 Chris Godwin WR TB 28.3 78.2
#> 3 1 Fake News 5022 Dallas Goedert TE PHI 29.4 98.3
#> 4 1 Fake News 4199 Aaron Jones RB GB 29.5 105.
#> 5 1 Fake News 6826 Cole Kmet TE CHI 25.2 108.
#> 6 1 Fake News 4137 James Conner RB ARI 29.1 117.
#> # ℹ 2 more variables: ecr_pos <dbl>, value_1qb <int>
Let’s do some team summaries now!
value_summary <- jml_values %>%
group_by(franchise_id,franchise_name,pos) %>%
summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
ungroup() %>%
group_by(franchise_id,franchise_name) %>%
mutate(team_value = sum(total_value)) %>%
ungroup() %>%
pivot_wider(names_from = pos, values_from = total_value) %>%
arrange(desc(team_value))
value_summary
#> # A tibble: 12 × 8
#> franchise_id franchise_name team_value QB RB TE WR FB
#> <chr> <chr> <int> <int> <int> <int> <int> <int>
#> 1 3 solarpool 30124 11618 14046 730 3730 NA
#> 2 11 Permian Panthers 26277 1651 4242 3967 16417 NA
#> 3 8 Hocka Flocka 22756 394 3254 5326 13782 NA
#> 4 5 Barbarians 21665 5701 8345 369 7250 NA
#> 5 2 KingGabe 19155 15 3903 3 15234 NA
#> 6 6 sox05syd 18152 7459 2633 2099 5961 NA
#> 7 4 The FANTom Menace 17535 1821 226 52 15436 NA
#> 8 12 jaydk 14907 1843 4049 4780 4235 NA
#> 9 1 Fake News 11130 549 6013 1961 2607 NA
#> 10 9 ZPMiller97 9815 3846 2170 83 3716 NA
#> 11 7 Flipadelphia05 7403 298 21 520 6564 NA
#> 12 10 JMLarkin 5167 4 17 17 5129 0
So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages - this helps normalise it to your league environment.
value_summary_pct <- value_summary %>%
mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>%
mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)
value_summary_pct
#> # A tibble: 12 × 8
#> franchise_id franchise_name team_value QB RB TE WR FB
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 3 solarpool 0.148 0.33 0.287 0.037 0.037 NA
#> 2 11 Permian Panthers 0.129 0.047 0.087 0.199 0.164 NA
#> 3 8 Hocka Flocka 0.112 0.011 0.067 0.268 0.138 NA
#> 4 5 Barbarians 0.106 0.162 0.171 0.019 0.072 NA
#> 5 2 KingGabe 0.094 0 0.08 0 0.152 NA
#> 6 6 sox05syd 0.089 0.212 0.054 0.105 0.06 NA
#> 7 4 The FANTom Menace 0.086 0.052 0.005 0.003 0.154 NA
#> 8 12 jaydk 0.073 0.052 0.083 0.24 0.042 NA
#> 9 1 Fake News 0.055 0.016 0.123 0.099 0.026 NA
#> 10 9 ZPMiller97 0.048 0.109 0.044 0.004 0.037 NA
#> 11 7 Flipadelphia05 0.036 0.008 0 0.026 0.066 NA
#> 12 10 JMLarkin 0.025 0 0 0.001 0.051 0
Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.
Age
Another question you might ask: what is the average age of any given team?
I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!
age_summary <- jml_values %>%
group_by(franchise_id,pos) %>%
mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>%
ungroup() %>%
mutate(weighted_age = age*value_1qb/position_value,
weighted_age = round(weighted_age, 1)) %>%
group_by(franchise_id,franchise_name,pos) %>%
summarise(count = n(),
age = sum(weighted_age,na.rm = TRUE)) %>%
pivot_wider(names_from = pos,
values_from = c(age,count))
age_summary
#> # A tibble: 12 × 12
#> # Groups: franchise_id, franchise_name [12]
#> franchise_id franchise_name age_QB age_RB age_TE age_WR age_FB count_QB
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 1 Fake News 30 27.9 27.7 29.2 NA 3
#> 2 10 JMLarkin 34 29.9 29.9 26.5 0 3
#> 3 11 Permian Panthers 27.2 26.3 34.5 26.8 NA 4
#> 4 12 jaydk 26.7 27.3 28.7 31.5 NA 4
#> 5 2 KingGabe 27.9 25.4 27.9 25.1 NA 5
#> 6 3 solarpool 27.4 28.5 29.6 31.3 NA 5
#> 7 4 The FANTom Menace 30.4 28.3 27.6 29.5 NA 5
#> 8 5 Barbarians 27.8 26.3 32 28.2 NA 2
#> 9 6 sox05syd 26.9 26.9 30 26.9 NA 3
#> 10 7 Flipadelphia05 35.6 28.6 27.9 30.3 NA 2
#> 11 8 Hocka Flocka 32.4 28.2 26.9 25.8 NA 3
#> 12 9 ZPMiller97 27.4 27.4 29.5 27.9 NA 3
#> # ℹ 4 more variables: count_RB <int>, count_TE <int>, count_WR <int>,
#> # count_FB <int>